Mammalian numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain.
نویسندگان
چکیده
The cell fate determinant Numb influences developmental decisions by antagonizing the Notch signaling pathway. However, the underlying molecular mechanism of this inhibition is poorly understood. Here we report that the mammalian Numb protein promotes the ubiquitination of membrane-bound Notch1 receptor. Furthermore, Numb expression resulted in the degradation of the Notch intracellular domain following activation, which correlated with a loss of Notch-dependent transcriptional activation of the Hes1 promoter as measured by a Hes1 luciferase reporter assay. The phosphotyrosine-binding (PTB) domain of Numb was required for both Notch1 ubiquitination and down-regulation of Notch1 nuclear activity. Numb-mediated ubiquitination of Notch1 was not dependent on the PEST region, which was previously shown to mediate Sel10-dependent ubiquitination of Notch in the nucleus, suggesting a distinct E3 ubiquitin ligase is involved. In agreement we demonstrate that Numb interacts with the cytosolic HECT domain-containing E3 ligase Itch and that Numb and Itch act cooperatively to promote ubiquitination of membrane-tethered Notch1. These results suggest that Numb recruits components of the ubiquitination machinery to the Notch receptor thereby facilitating Notch1 ubiquitination at the membrane, which in turn promotes degradation of the intracellular domain circumventing its nuclear translocation and downstream activation of Notch1 target genes.
منابع مشابه
Non-degradative ubiquitination of the Notch1 receptor by the E3 ligase MDM2 activates the Notch signalling pathway.
The Notch receptor is necessary for modulating cell fate decisions throughout development, and aberrant activation of Notch signalling has been associated with many diseases, including tumorigenesis. The E3 ligase MDM2 (murine double minute 2) plays a role in regulating the Notch signalling pathway through its interaction with NUMB. In the present study we report that MDM2 can also exert its on...
متن کاملSEL-10 is an inhibitor of notch signaling that targets notch for ubiquitin-mediated protein degradation.
Notch receptors and their ligands play important roles in both normal animal development and pathogenesis. We show here that the F-box/WD40 repeat protein SEL-10 negatively regulates Notch receptor activity by targeting the intracellular domain of Notch receptors for ubiquitin-mediated protein degradation. Blocking of endogenous SEL-10 activity was done by expression of a dominant-negative form...
متن کاملAutophagy negatively regulates tumor cell proliferation through phosphorylation dependent degradation of the Notch1 intracellular domain
Autophagy is a highly conserved mechanism that degrades long-lived proteins and dysfunctional organelles, and contributes to cell fate. In this study, autophagy attenuates Notch1 signaling by degrading the Notch1 intracellular domain (Notch1-IC). Nutrient-deprivation promotes Notch1-IC phosphorylation by MEKK1 and phosphorylated Notch1-IC is recognized by Fbw7 E3 ligase. The ubiquitination of N...
متن کاملNovel natural immunogenic peptides from Numb1 and Notch1 proteins for CD8+ cells in ovarian ascites.
Notch is a plasma membrane receptor involved in the control of cell fate specification and in the maintenance of the balance between proliferation and differentiation in many cell lineages. Disruption of Notch has been implicated in a variety of hematological and solid cancers. Numb is also expressed in many adult mammalian cells. Adult cells divide symmetrically, and Numb is symmetrically part...
متن کاملRegulation of Notch1 signaling by the APP intracellular domain facilitates degradation of the Notch1 intracellular domain and RBP-Jk.
The Notch1 receptor is a crucial controller of cell fate decisions, and is also a key regulator of cell growth and differentiation in a variety of contexts. In this study, we have demonstrated that the APP intracellular domain (AICD) attenuates Notch1 signaling by accelerated degradation of the Notch1 intracellular domain (Notch1-IC) and RBP-Jk, through different degradation pathways. AICD supp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 278 25 شماره
صفحات -
تاریخ انتشار 2003